y(x).ru
← калькулятор матриц

Умножение матрицы на число онлайн

Умножение матрицы на число

Операция умножения матрицы А на число k заключается в построении матрицы kA = [kaij]. Умножение матрицы на число допустимо для матриц любого размера, результатом умножения является матрица того же порядка, что и исходная матрица.

Таким образом, произведение матрицы А на число k – это результирующая матрица B = kA того же порядка, полученная умножением всех элементов aij исходной матрицы на заданное число.

Математически умножение матрицы на число можно представить следующими выражениями:
Аm×n × k = Вm×n
aij × k = bij,
где i принимает значение от 1 до m, j имеет значения от 1 до n


Пример умножения матрицы на число.

Даны матрица А и число k:
Умножение матрицы на число: исходные данные
Найти произведение матрицы и числа.
Решение:
Произведение матрицы и числа: решение

Свойства умножения матрицы на число:

  1. Единица является нейтральным числом умножения любой матрицы, результатом умножения на нейтральное число является исходная матрица.
    1×А = А
  2. Результатом умножения любой матрицы на ноль всегда является нулевая матрица, все элементы которой равняются нулю.
    0×А = О
  3. Для матриц одного порядка и действительного числа выполняется свойство дистрибутивности умножения относительно сложения.
    k×(А+B) = k×A + k×B
  4. Для любой матрицы и суммы действительных чисел выполняется свойство дистрибутивности. (k+n)×А = k×A + n×A
  5. Для любой матрицы и произведения любых действительных чисел выполняется свойство ассоциативности умножения.
    (k×n)×А = k×(n×A)

Вы также можете

в качестве элементов матрицы вводить целые и дробные числа, а также выражения с переменной x (например, в ячейку матрицы можно ввести 2x, или sin(x), или даже ((x+2)^2)/lg(x)).
Полный список доступных функций можно найти в справке.