y(x).ru
← калькулятор матриц

Умножение матрицы на матрицу онлайн

Умножение матрицы на матрицу

Операция умножения двух матриц А и В представляет собой вычисление результирующей матрицы С, каждый элемент cij которой равен сумме произведений элементов в соответствующей строке первой матрицы aik и элементов в столбце второй матрицы bkj.

Две матрицы можно умножать между собой только тогда, когда количество столбцов в первой матрице совпадает с количеством строк во второй матрице. Другими словами первая матрица обязательно должна быть согласованной со второй матрицей. Таким образом, результатом операции умножения матрицы размера m×n на матрицу размером n×k является матрица размером m×k.

Итак, произведение матрицы Аm×n на матрицу Вn×k – это матрица Сm×k, элемент cij которой, находящийся в i-ой строке и j-ом столбце, равен сумме произведений i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В.

Каждый элемент матрицы Сm×k равен:
Произведение матрицы на матрицу: формула элемента
где k принимает значение от 1 до n.

Рассмотрим пример умножения двух матриц.

Даны две матрицы А и В.
Пример произведения матрицы на матрицу: исходные данные
Найти произведение матриц А × В.
Решение.
Нахождение произведения матрицы на матрицу

Свойства умножения матриц (свойства справедливы, если матрицы подходящего порядка):

  1. Ассоциативность
    (А × В) × С = А × (В × С)
  2. Дистрибутивность
    А × (В+С) = А×В + А×С
    (А+В) × С = А×С + В×С
  3. Ассоциативность и коммутативность относительно умножения на число
    (k×A) × B = k × (A×B) = A × (k×B)
  4. В общем случае умножение матриц не коммутативно
    А×В ≠ В×А
  5. Произведение коммутативно в случае умножения на единичную матрицу
    Em × Am×n = Am×n × En = Am×n

Вы также можете

в качестве элементов матрицы вводить целые и дробные числа, а также выражения с переменной x (например, в ячейку матрицы можно ввести 2x, или sin(x), или даже ((x+2)^2)/lg(x)).
Полный список доступных функций можно найти в справке.